联众涂料论坛

标题: Binder [打印本页]

作者: alenkhoo    时间: 2008-7-26 17:37
标题: Binder
The binder, or resin, is the actual film forming component of paint. It is the only component that must be present; other components listed below are included optionally, depending on the desired properties of the cured film.
The binder imparts adhesion, binds the pigments together, and strongly influences such properties as gloss potential, exterior durability, flexibility, and toughness.
Binders include synthetic or natural resins such as acrylics, polyurethanes, polyesters, melamine resins, epoxy, or oils.
Binders can be categorized according to drying, or curing mechanism. The four most common are simple solvent evaporation, oxidative crosslinking, catalyzed polymerization, and coalescence. There are others.
Note that drying and curing are two different processes. Drying generally refers to evaporation of vehicle, whereas curing refers to polymerization of the binder. Depending on chemistry and composition, any particular paint may undergo either, or both processes. Thus, there are paints that dry only, those that dry then cure, and those that do not depend on drying for curing.
Paints that dry by simple solvent evaporation contain a solid binder dissolved in a solvent; this forms a solid film when the solvent evaporates, and the film can re-dissolve in the solvent again. Classic nitrocellulose lacquers fall into this category, as do non-grain raising stains composed of dyes dissolved in solvent.
Latex paint is a water-based dispersion of sub-micron polymer particles. The term "latex" in the context of paint simply means an aqueous dispersion; latex rubber (the sap of the rubber tree that has historically been called latex) is not an ingredient. These dispersions are prepared by emulsion polymerization. Latex paints cure by a process called coalescence where first the water, and then the trace, or coalescing, solvent, evaporate and draw together and soften the latex binder particles and fuse them together into irreversibly bound networked structures, so that the paint will not redissolve in the solvent/water that originally carried it. Residual surfactants in the paint as well as hydrolytic effects with some polymers cause the paint to remain susceptible to softening and, over time, degradation by water.
Paints that cure by oxidative crosslinking are generally single package coatings that when applied, the exposure to oxygen in the air starts a process that crosslinks and polymerizes the binder component. Classic alkyd enamels would fall into this category.
Paints that cure by catalyzed polymerization are generally two package coatings that polymerize by way of a chemical reaction initiated by mixing resin and hardener, and which cure by forming a hard plastic structure. Depending on composition they may need to dry first, by evaporation of solvent. Classic two package epoxies or polyurethanes would fall into this category.
Still other films are formed by cooling of the binder. For example, encaustic or wax paints are liquid when warm, and harden upon cooling. In many cases, they will resoften or liquify if reheated.
Recent environmental requirements restrict the use of Volatile Organic Compounds (VOCs), and alternative means of curing have been developed, particularly for industrial purposes. In UV curing paints, the solvent is evaporated first, and hardening is then initiated by ultraviolet light. In powder coatings there is little or no solvent, and flow and cure are produced by heating of the substrate after application of the dry powder.




欢迎光临 联众涂料论坛 (http://bbs.coatu.com/) Powered by Discuz! X3.1