|
许多高分子增稠剂增稠的体系不受溶液的pH值或电解质浓度的影响。另外,高分子增稠剂需较少的量就能达到所需要的黏稠度,比如一个产品需要表面活性剂增稠剂如椰油二乙醇酰胺的质量分数3.0%,达到同样的效果仅需纤维素聚合物0.5%即可。大部分水溶性高分子化合物在化妆品工业不但用来作增稠剂,而且用来作悬浮剂、分散剂和定型剂等。
纤维素类纤维素类在水基体系中是一类非常有效的增稠剂,广泛应用于化妆品的各种领域。纤维素是天然有机物,它含有重复的葡萄糖苷单元,每个葡萄糖苷单元含有3个羟基,通过这些羟基可以形成各种各样的衍生物。纤维素类增稠剂通过水合膨胀的长链而增稠,纤维素增稠的体系表现明显的假塑性流变形态。使用量一般质量分数为1%左右。
聚丙烯酸类聚丙烯酸类增稠剂自1953年Goodrich公司将Carbomer934引入市场至今已有40年的历史了,现在这系列增稠剂已经有了更多的选择。聚丙烯酸类增稠剂的增稠机理有2种,即中和增稠与氢键结合增稠。中和增稠是将酸性的聚丙烯酸类增稠剂中和,使其分子离子化并沿着聚合物的主链产生负电荷,同性电荷之间的相斥促使分子伸直张开形成网状结构达到增稠效果;氢键结合增稠是聚丙烯酸类增稠剂先与水结合形成水合分子,再与质量分数为10%~20%的羟基给予体(如具有5个或以上乙氧基的非离子表面活性剂)结合,使其卷曲的分子在含水系统中解开形成网状结构达到增稠效果。不同的pH值、不同的中和剂以及可溶性盐的存在对该增稠体系的黏度有较大影响,pH值小于5时,pH值增大黏度升高;pH值在5~10黏度几乎不变;但随着pH值继续升高,增稠效率又要下降。一价离子只降低体系的增稠效率,二价或三价离子不但能使体系变稀,而且当含量足够时会产生不溶性沉淀物。
天然胶及其改性物天然胶主要有胶原蛋白类和聚多糖类,但是作为增稠剂的天然胶主要是聚多糖类。增稠机理是通过聚多糖中糖单元含有3个羟基与水分子相互作用形成三维水化网络结构,从而达到增稠的效果。它们的水溶液的流变形态大部分是非牛顿流体,但也有些稀溶液的流变特性接近牛顿流体。它们的增稠效果一般与体系的pH值、温度、浓度和其他溶质的存在有较大关系。这是一类非常有效的增稠剂,一般用量为0.1%~1.0%。
无机高分子及其改性物无机高分子类增稠剂一般具有三层的层状结构或一个扩张的格子结构,最有商业用途的两类是蒙脱土和水辉石。其增稠机理是无机高分子在水中分散时,其中的金属离子从晶片往外扩散,随着水合作用的进行,它发生溶胀,到最后片晶完全分离,其结果形成阴离子层状结构片晶和金属离子的透明胶体悬浮液。在这种情况下,片晶带有表面负电荷,它的边角由于出现晶格断裂面而带有少量的正电荷。在稀溶液中,其表面的负电荷比边角的正电荷大,粒子之间发生相互排斥,故不会产生增稠作用。随着电解质的加入和浓度增加,溶液中离子浓度的增加,片晶表面电荷减少。这时,主要的相互作用由片晶间的排斥力转变为片晶表面的负电荷与边角正电荷之间的吸引力,平行的片晶相互垂直地交联在一起形成所谓“纸盒式间格”的结构,引起溶胀产生胶凝从而达到增稠的效果。离子浓度进一步加大又会破坏结构发生絮凝导致降低稠度。这类增稠剂主要用于牙膏、香波、护发素、膏霜、乳液和止汗剂等的增稠。稠度一般随着浓度的增加而迅速增大随后趋于平缓,流变形态为触变性。除具增稠性能外,在体系中还有稳定乳液、悬浮作用。其改性物主要是季铵盐化,改性后具有亲油性,可用于含油量多的体系。
聚氧乙烯类一般把相对分子质量大于25 000的产品称作聚氧乙烯,而小于25 000的称作聚乙二醇。聚氧乙烯的水溶液在质量分数为百分之几时为假塑性流体,其水溶液倾向呈黏稠状。如将浸入其中的物体从溶液中拉出,形成长拉丝和成膜。相对分子质量越大和相对分子质量分布越宽的黏稠性就越大,低相对分子质量和窄相对分子质量分布的聚氧乙烯黏稠性较低,其水溶液的黏度取决于相对分子质量大小、浓度、温度和测量黏度时的切变速度。其溶液的黏度随着相对分子质量的增大和浓度的增加而上升,随着温度上升(10℃~90℃)而较急剧下降。聚氧乙烯水溶液的假塑性随相对分子质量的减小而降低,相对分子质量1×105的水溶液流变性接近牛顿流体。增稠效果来源于高分子聚合物链溶解进表面活性剂体系中,增稠机理主要与高分子聚合物链有关,并不依赖于表面活性剂体系。聚氧乙烯的水溶液在紫外线、强酸和过渡金属离子(特别是Fe3+、Cr3+和Ni2+)作用下会自动氧化降解,失去其黏度。 |
|